```
TITLE
INSTITUTION
PUB DATE
NOTE
EDRS PRICE
DESCRIPTORS
IDENTIFIERS
Quantities, Units, and Symbnls.
Royal Society, London (England).
71
49p.
MF-\$0.65 HC-\$3.29
*Chemistry; Metric System; *Physical Sciences; *Physics; Reference Books; *Standards; *Symbols (Mathematics)
International System of Units
```

ABSTRACT
This booklet provides a reference to che quartities, units, and their symbols which are used in physical science. It is a revision of a 1969 report and takes account of the progress which has been made in obtaining international agreement on the definitions, names, and symbols for units and on the rules for the expression of relations involving numbers between physical quantities and units. The report is divided into ten parts: (1) Physical Quantities, Units, and Numerical Values; (2) Recommended Mathematical Symbols; (3) Chemical Elements, Nuclides, and Particles; (4) Quantum States; (5) Nuclear Physics; (6) Thermodynamic Results; (7) Galvanic Cells; (8) Abbreviations of Common Words and Phrases; (9) Recommended Values of physical Constants; and (10) Bibliography. (Author/TS)

QUANTITIES, UNITS, ÁND SYMBOLS

A REPORT BY
THE SYMBOLS COMMITTEE OF THE ROYAL SOCIETY

REPRESENTING
THE ROYAL SOCIETY THE CHEMICAL SOCIETY
THE FARADAY SOCIETY
THE INSTITUTE OF PHYSICS

1971

Approved by the Council of the Royal Society 15 July 1971

This is a revised version of Symbols, signs, and abbreviations, issued in 1969. Price f0. 35 per copy or $£ 6$ per 25 copies (post free) from The Royal Society, 6 Carliton House Terrace, London SV1Y JAG

CONTENTS

PREACE page 5
PART I: PHYSICAL QUANTITIES, UNITS, AND NUMERICAL VALUES 6
I.1. Introduction 6
1.2. Physical quantities and symbols for physicai QUANTITIES 8
1.2.1. Physical quäntities 8
I.2.2. Symbols for physical quantities 8
I.2.3. Printing of symbols for physical quantities 8
I.2.4. Choice of symbols for physical quantities 9
1.2.5. Modifying signs 9
I.2.6. Printing of subscripts and superscripts 10
I.2.7. Use of the words 'specific' and 'molar' 10
I.2.8. Partial molar quantities 11
I.2.9. List of recommended subscripts and superscripts and other modifying signs to be used with the symbols for physical quantities 11
(a) Subscripts 11
(b) Superscripts 11
I.2.10. List of recommended symkols for physical quantities 12
(a) Space and time 12
(b) Periodic and related phenomena 12
(c) Mechanics 13
(d) Thermodynamics 13
(e) Electricity and magnetism 14
(f) Light and related electromagnetic radiation 15
(g) Acoustics 15
(h) Physical chemistry 15
(i) Molecular physics 17
(j) Atomic and nuclear physics 17
(k) Nuclear reactions and ionizing radiations 18
(l) Quantum mechanics 18
(m) Solid state physics 19
(n) Molecular spectroscopy 19
I.2.11. Mathematical operations on physical quantities 20
I.E. UNTTS AND SYMBOLS FOR UNITS page 2 i
1.3.1. The International System of Units (SI) 21
I.3.2. Definitions of the SI base units 22
I.3.3. Names and symiois for SI base units 23
T.3.4. Names and symbols for SI supplementary units 23
1.3.5. Special names and symbols for SI derived units 23
1.3.6. Examples of SI derived units and unit symbols for other quantities 24
I.3.7. SI prefixes 21
T.3.8. Decimal multiples of SI units having spesial names 25
I.3.9. Other units now exactly defined in terms of SI units 26
I.3.10. Units defined in terms of certain physical constants 27
I.3.11. 'International' electric units 27
I.3.12. Electric and magnetic units belonging to unit-systems other than the SI 28
I.3.13. Printing of symbols for units 28
I.3.14. Multiplication and division of units 28
I.4. Numbers 29
I.4.亡. Printing of numbers 29
1.4.2. Multiplication and division of numbers 29
PART II: RECOMMENDED MATHEMATICAL SYMBOLS 30
PART III: CHEMXCAL ELEMENTS, NUCLIIES, AND PARTICLES 33
III.1. Definitions 33
III.2. Symbols for elements and nuclides 33
III.3. Symbols for particles and quanta 33
III.4. Notation for nuclear reactions 34
PART IV: QUANTUM STATES 35
IV.1. General rules 35
IV.2. Atomic spectroscopy 35
IV.3. Molecular spectroscopy 35
IV.4. Nuclear spectroscopy 36
IV.5. Spectroscopic transitions 36
PART V: NUCLEAR PHYSICS page 38
V.1. Notation for covariant character of coupling 38
V.2. Character of transitions 38
V.3. Sign of polarization vector (Basel convention) 38
PART VI: THERMODYNAMIC RESUETS 39
PART VII: GALVANIC CELLS 40
VII.1. The electromotive force of a cell 40
VII.2. The electromotive force of a half cell and the so-called 'electrode potential " 40
PART VIII: ABBREVIATIONS OF COMMON WORDS AND PHRASES 42
PART IX: RECOMMENDED VALUES OF PHYSICAL CONSTANTS 43
PART X: BIBLIOGRAPHY 46
X.1. General sources 46
X.2. Special sources 47
X.3. Supplementary literature 48

PREFACE

The 1969 Report of the Symbols Committee of the Royal Society entitled ' $S y m i \cdot o l s$, signs, and abbreviations' is now out of print; it was widely read and was clearly of considerable value. The Symbols Committee has therefore been charged with the preparation of a new report, which inter alia takes account of the progress which has been made in obtaining further international agreement on the definitions, names, and symbols for urits and on the rules for the expression of relations involving numbers between physical quantities and units. The Committee feels that the new report is more properly entitled Quantities, units, and symbols.

The Committee has again accepted the recormendations of the following international bocies, on each of which the U.K. is represented:

The General Conference of Weights and Measures The Internationai Organization for Standardization
The International Union of Pure and Applied Physics
The International Union of Fure and Applied Chemistry The International Electrotechnical Commission

The Committee has maintained close contact with the British Standards Institution which is pursuing a common aim towards the adoption of internationally recognized units and symbols, as shown in BS 3763, BS 1991, and in several other British Standards.

It is emphasized that the Symbols Committee recommends on? y those procedures and symbols which have been internationally agreed.

PART I
 PHYSICAL QUANTITIES, UNITS, AND
 NUMERICAL VALUES

1.1. Introduction

The value of a physical quantity is equal to the product of a numerical value and a unit

$$
\text { physical quantity }=\text { numerical value } \times \text { unit. }
$$

Neither any physical quantity, nor the symbol used to denote it, should imply a particular choice of unit.

Operations on equations involving physical quantities, units, and numerical values, should follow the ordinary rules cf algebra.

Thus the physical quantity called the wねvelength λ of one of the yellow sodium lines has the value

$$
\lambda=5.896 \times 10^{-7} \mathrm{~m}
$$

where m is the symbol for the unit of length called the metre (see §I.3). This may equally well be written in the form

$$
\lambda / \mathrm{m}=5.896 \times 10^{-7}
$$

or in any of the other ways of expressing the equality of λ and 5.896×10^{-7} multiplied by m. By definition (see §I.3)

$$
\AA=10^{-10} \mathrm{~m}
$$

and

$$
\text { in }=2.54 \div 10^{-2} \mathrm{~m}
$$

where \AA and in are the symbols for the units of length called respectively the ångström and the inch; it follows that

$$
\lambda / \AA=(\lambda / \mathrm{m}) \times(\mathrm{m} / \AA)=\mathbf{5 8 9 6}
$$

and

$$
\lambda / \mathrm{in}=(\lambda / \mathrm{m}) \times(\mathrm{m} / \mathrm{in})=5.896 \times 10^{-7} /\left(2.54 \times 10^{-2}\right) \approx 2.321 \times 10^{-5}
$$

Thus λ may be equated to $5.896 \times 10^{-7} \mathrm{~m}$, or to $5896 \AA$, or to $2.321 \times 10^{-5} \mathrm{in}$, but may not be equated to 5.896×10^{-7} or to any other number.

It follows from the above discussion that the expression which is placed at the head of a column of numerical values of a physical quantity in a table should be a pure number, such as the quovient of the symbol for the physical quantity and the symbol for the unit used.

Example:

| $\theta_{\mathrm{c}} /{ }^{\circ} \mathrm{C}$ | T / K | $10^{3} \mathrm{~K} / T$ | p / MPa | $\ln (p / \mathrm{MPa})$ | $V_{\mathrm{m}}^{\mathrm{g}} / \mathrm{cm}^{3} \mathrm{~mol}^{-1}$ | $p V_{\mathrm{m}}^{\mathrm{g}} / R T$ |
| ---: | :--- | ---: | :--- | :---: | :---: | :---: | :---: |
| -56.60 | 216.55 | 4.6179 | 0.5180 | -0.6578 | 3177.6 | 0.9142 |
| 0.00 | 273.15 | 3.6610 | 3.4853 | 1.2486 | 456.97 | 0.7013 |
| 31.04 | 304.19 | 3.2874 | 7.3815 | 1.9990 | 94.060 | 0.2745 |

In this table T denotes thermodynamic temperature and K the unit of thermodynamic temperature called the kelvin. Expressions such as ' $T(\mathrm{~K})$ ' or ' $T, \mathrm{~K}$ ' dú not denote T divided by K and should be abandoned in favour of T / K.

Similariy, the expression used to define the numerical values of a physical quartitily plotted on a graph should be a pure number, saxch as the quotient of the symbol for the physical quantity and the symbol for the unit used.

Algebraically equivalent forms such as kK / T or $\left(10^{-3} T / \mathrm{K}\right)^{-1}$ may of course be used in place of $10^{3} \mathrm{~K} / T$.

A clear distinction should be drawn between physical quantities and units, and between the symbols for physical quantities and the symbols for units.

Symbols for physical quantities should be printed in italic (sloping) type. Symbols for units should be printed in roman (upright) type. In typescript the distinction should be made by underlining symbols for physical quantities in accord with standard printers' practice (see the Bibliography, §X.2.1 or §X.3.5).

Physical quantities and the symbols for physical quantities are dealt with in §I.2. The symbols for physical quantities specified there are recommendations.

Units and symbols for units are dealt with in §I.3. The symbols for units specified there are mandatory.

Numbers are dealt with in §I.4.

I.2. Physical quantities and symbols for physical quantities

I.2.1. Physical quantities

A physical quantity is defined by a complete specification of the operations used to measure the ratio (a pure number) of two particular values of that physical quantity.

Each physical quantity is given a name and a symbol which is an abbreviation for that name.

By international convention, seven physical quantities are chosen for use as dimensionally independent base quantities:

\quad Physical quantity	Symbol for quaritity
length	l
mass	m
time	t
electric carrent	I
thermodynamic temperature	T
luminous intensity	$I_{\mathbf{v}}$
amount of substance	n

Allother physical quantities are regardedes being derived from the base quantities. Plane angle and solid angle are sometimes regarded as base quantities.

I.2.2. Symbols for physical quantities

The symbol for a physical quantity should be a single letter of the latin or the greek alphabet.

An exception to this rule has been made for certain dimensionless quantities used in the study of transport processes, for which the internationaily agreed. symbols consist of two letters, the first a capital and the second lower case. Suck two-letter symbols should be enclosed in parentheses. Exxample: Reynolds number: (Re).

When necessary the symbol for a physical cuantity may be modified by attaching to it subscripts and/or superscripts and/or other modifying signs having specified meanings.

I.2.3. Printing of symbols for physical quantities

When letters of the latir alphabet are used as symbols for physical quantities they should be printed in itaiic type. When letters of the greek alphabet are used as symbols for physical quantities they should whenever possible be printed in sloping ('italic') rather than upright ('roman') type.

The symbols for vector quantities should be printed in bold faced italic type. Examples: force: \boldsymbol{F}, electric field strength: \boldsymbol{E}. (When the directional character of such quantities is not to be emphesized, the use of ordinary italic type remains as an alternative. However, the use of bold faced italic type will often remain convenient in order to allow the use of the same letters for other quantities.)

The symbols for tensors of the second rank should be printed in bold faced sans serif type which whenever possible should be italic (sloping) rather than roman (upright). Exarraples: S, T.
\square

Abbreviations, i.e. shortened forms of names such as p.f. for partition function, should not be used in matiematical equations. When used in text they should be printed in roman (upright) type. (See also Part VIII.)

1.2.4. Choice of $\because m b o l s$ for physical quantities

A list of recommended symbols for physical quantities is given in §I.2.10. Whenever possible the symbol used for a physical quintity should be that (or one of those) recommended there.

Even with the use of both capital and lower case letters, and of bold faced as well as or ${ }^{\top}$ inary italic (sloping) type as specified in §I.2.3, the available distinctive letter symbols are insufficient to enable eaci symbol to be allotted to a single quantity. Some alternatives are therefore given in the list in §1.2.10 where a need for them is most likely to arise or, occasionally, where alternative usages are firmly established and unobjectionable. In some instances a preference is expressed (see hes ding of §I.2.10) and the preferred symbol should then be used whenever possible; in others no preference is expressed.

Where it is necessary to choose from alternative symbols for a quantity, or to adopt a symbol for a quantity not lisied in §I.2.10, consideration should be given to current piactice by authorities in the field and to the desirability that symbols for quantities constituting a well defined class should as far as possible belong to the same alphabet, fount, and case.

In order to obtain additional flexibility, capital letters may be used as variants for lower case letters, and vice versa, if no ambiguity is likely to arise. For example, instead of d_{i} and d_{e} for internal and external diameter, d and D may be used. The recommended symbol for length is l and for inductance L, but l and L may also be used for two lengths or two iuductances; if length and inductance appear together, however, l should be used only for length and L for inductance, and necessary distinctions between different lengths or between different inductances should be made by means of subscripts or other modifying signs.

1.2.5. Modifying signs

Letter symbols, numbers, or other signs, may be placed as subscripts or superscripts immediately after the symbol for a physical quantity in order to modify its meaning. A list of recommended symbols for some of the most commonly needed subscripts and superscripts is given in §I.2.9.

For the use of other subscripts and superscripts, and of other modifying signs, no rigid rules are laid down but a satisfactory notation should fulfil the following requirements:
(i) it should be unambiguous;
(ii) it should be simple, systematic, and easy to remember;
(iii) it should not use more letters thar necessary;
(iv) it should not be too expensive or difficule to print.

Modifying signs such as dots, bars, or tildes (\sim) may be placed above (or excep tionally below) the symbol for a physical quantity. Such signs, however, should be used sparingly and should never be letters of the alphabet or numbers.

Brackets, including parentheses (), braces \{\}, square brackets [], and angle brackets \rangle, should not be used around the symbol for a quantity in order to make it represent any other quantity, unless such use is consistently adopted for a whole class of quantities as in crystallography. In particular, the use of square brackets around a chemical formula to denote the concentration of the substance is recommended.

I.2.6. Printing of subscripts and superscripts

Subscripts or superscripts which are themselves symbols for physical quantities should be printed in italic (sloping) type. All other letter symbols used as subscripts or superscripts should be printed in roman (upright) type.

Example: C_{p} for heat capacity at constant pressure, but C_{B} for heat capacity of substance B .
When two or more subscripts, or two or more superscripts, having separate meanings are attached to the same symbol they should be separated by commas.

Example: $C_{p, \mathrm{~B}}$ for heat capacity at constant pressure of substance B .
Second-order superscripts or subscripts should be avoided as far as possible. Thus e $x^{x^{2}}$ may be printed as $\exp x^{2}$. Also $\Lambda_{\mathrm{NO}_{3}^{-}}$may be pririted as $\Lambda\left(\mathrm{NO}_{3}^{-}\right)$and $\rho_{20}{ }^{\circ} \mathrm{C}$ as $\rho\left(20^{\circ} \mathrm{C}\right)$.

1.2.7. Use of the words 'specific' and 'molar'

The word 'specific' before the name of an extensive physical quantity is restricted to the meaning 'divided by mass'. For example, specific volume is the volume divided by the mass. When the extensive quantity is represented by a capital letter, the corresponding specific quantity may be represented by the corresponding lower case letter.

Examples: volume: $V \quad$ specific volume: $v=V / m$
heat capacity: $C_{p} \quad$ specific heat capacity: $c_{p}=C_{p} / m$.
The numerical value of a specific physical quantity depends on tho units selected for the physical quantity and for the mass.

The word 'molar' before the name of an extensive quantity is restricted to the meaning 'divided by amount of substance'. For example, molar volume is the volume divided by the amount of substance. The subscript mattached to the symbol for the extensive quantity denotes the corresponding molar quantity.

Examples: volume: $V \quad$ molar volume: $V_{m}=V / n$
Gibbs function: $G \quad$ molar Gibbs function: $G_{m}=G / n$.
The subscript m may be omitted where there is no risk of ambiguity.

The numerical value of a molar physical quantity depends on the units selected for the physical quantity and for the amount of substance. The most commonly used unit for amount of substance is the mole (see §I.3.2).

I.2.8. Partial molar quantities

The symbol X_{B}, where X denotes ar extensive quantity and B is the chemical symbol for a substance, denotes the partial molar quantity for the substance \mathbf{B} defined by the relation:

$$
X_{\mathrm{B}}=\left(\partial X / \partial n_{\mathrm{B}}\right)_{T, p, n_{\mathrm{O}}, \ldots}
$$

${ }^{4}$ The partial molar quantity X_{B} for a pure substance B, which is identical with the molar quantity X_{m} for the pure substance B, may be denoted by X_{B}^{*}, where the superscript * denotes 'pure', so as to distinguish it from the partial molar quantity X_{B} for the substance B in a mixture.
1.2.9. List of recommended subscripts and superscripts and other modifying signs to be used with the symbols for physical quantities
(a) Subscripts
т.тা... especially with symbols for thermodynamic functions, referring to dif$1,2 \ldots$ ferent systems or different states of a system
А, в ... referring to molecular species $\mathbf{A}, \mathrm{B} . .$.

- referring to a typical ionic species i
$u \quad$ referring to an undissociated molecule
p, V, T, S indicating constant pressure, volume, temperature, entropy
$p, m, c, a \quad$ with symbol for an equilibrium constant, indicating that it is expressed in terms of pressure, molality, concentration, or relative activity
$\mathrm{g}, 1, \mathrm{~s}, \mathrm{c} \quad$ referring to gas, liquid, solid, and crystalline states respectively
$\mathrm{f}, \mathrm{e}, \mathrm{s}, \mathrm{t}, \mathrm{d}$ referring to fusion, evaporation, sublimation, transition, and dissolution or dilution respectively
e referring to the critical state or indicating a critical value
C, D, F with symbols for optical properties, referring to particular wavelengths. ,$+-\quad$ referring to a positive or negative ion, or to a positive or negative electrode $\infty \quad$ indicating limiting value at infinite dilution.

Some of the above subscripts may sometimes be more conveniently used as superscripts.

(b) Superscripts

θ standard in general

* indicating a pure substance
id ideal
E excess

1.2.10. List of recommended symbols for physical quantities

It is recognized that according to context some departures from the recommended symbols will be necessary. Where two or more symbols separated by commas are given for a quantity, these symbols are regarded as alternatives for which no preference is expressed; where they are separated by a dotted line, the first is preferred.
[Note: A, B denotes no preference; $A \ldots B$ denotes A preferred]

(a) Space and time

angle (plane angle)
solid angle
length
breadth
height
thickness
radius
diameter: $2 r$
distance along path
generalized coordinate
rectangular coordinates
cylindrical coordinates

Ω, ω
l
b
h
d, δ
r
d
s, L
q
x, y, z r, ϕ, z
spherical coordinates r, θ, ϕ
position vector; radius vector r
area
A...S
rolume $V \ldots v$
time t
angular velocity: $\mathrm{d} \theta / \mathrm{d} t \quad \omega$
angular acceleration: $\mathrm{d} \omega / \mathrm{d} t \quad \alpha$
velocity: $\mathrm{d} s / \mathrm{d} t \quad u, v, w$
acceleration: $\mathrm{d} u / \mathrm{d} t$
a
acceleration of free fall g
speed of light in a vacuum
Mach number
(b) Periodic and related phenomena

period	T	circular wavenumber: $2 \pi \sigma$	k
relaxation time ${ }^{(1)}$	τ	circular wavevector	\boldsymbol{k}
frequency: $1 / T$	ν, f	damping coefficient ${ }^{(3)}$	δ
rotational frequency	n	logarithmic decrement ${ }^{(3)}$: δ / ν	Λ
angular frequency ${ }^{(2)}$: $2 \pi \nu$	ω	attenuation coefficient ${ }^{(4)}$	α
wavelength	λ	phase coefficient ${ }^{(4)}$	β
wavenumber : $1 / \lambda$	$\sigma \ldots \tilde{\nu}$	propagation coefficient ${ }^{(4)}: \alpha+\mathrm{i} \beta$	γ
wavevector	$\boldsymbol{\sigma}$		

(1) When F is a function of time t given by $F(t)=A+B \exp (-t / \tau) ; \tau$ is also called time constant.
${ }^{(2)}$ Also called pulsatance.
${ }^{(3)}$ When F is a function of time t given by $F(t)=A \exp (-\delta t) \sin \left\{2 \pi \nu\left(t-t_{0}\right)\right\}$.
${ }^{(4)}$ When F is a function of distance x given by $F^{\prime}(x)=A \exp (-\alpha x) \cos \left\{\beta\left(x-x_{0}\right)\right\}$.
[Note: A, B denotes no preference; $A \ldots B$ denotes A preferred]
(c) Mechanics
mass
density (mass density): m / V
relative density: ρ_{2} / ρ_{1}
specific volume: V / m
reduced mass: $m_{1} m_{2} /\left(m_{1}+m_{2}\right)$
momentum: mu
momentum (vector): mu
angular momentum
angular momentum (vector): $\boldsymbol{r} \times \boldsymbol{p} \quad \boldsymbol{L}$
moment of inertia ${ }^{(1)}$
force
force (vector)
weight G...P, W
bending moment
moment of force (vector): $\boldsymbol{r} \times \boldsymbol{F}$
torque; moment of a couple
pressure
normal stress
shear stress
linear strain: $\Delta l / l_{0}$
shear strain; shear angle: $\Delta \theta / \theta_{0}$
volume strain: $\Delta V / V_{0}$
Young modulus: σ / ϵ
m
ρ
d
v
μ
p
\boldsymbol{p}
\boldsymbol{p}_{θ}
\boldsymbol{L}
I, J

F
\boldsymbol{F}
M
\boldsymbol{M}
$p \ldots{ }^{T}$
σ
τ
ϵ, e
γ
$E \mid$ Reynolds number: $\rho u l / \eta$
compressibility: $-V^{-1} \mathrm{~d} V / \mathrm{d} p \quad \kappa$
second moment of area ${ }^{(2)} \quad I_{a}$
section modulus Z, W
coefficient of friction $\quad \mu \ldots f$
viscosity (dynamic viscosity) $\quad \eta \ldots \mu$
diffusion coefficient D
surface tension $\quad \gamma, \sigma$
angle of contact θ
energy $\quad E, W$
potential energy $\quad E_{p}, V, \Phi$
kinetic onergy $\quad E_{\mathrm{k}}, \boldsymbol{T}, \boldsymbol{K}$
power
G
$\begin{array}{lr}\text { buik modulus: }-p / \theta & K \\ \text { Poisson ratio } & \mu, \nu\end{array}$
second polar moment of area ${ }^{(3)} \quad I_{p}$
fluidity: $1 / \eta \quad \phi$
kinematic viscosity: $\eta / \rho \quad \nu$
work W, A
P
H
L
($R e$)
(1) $I_{z}=\int\left(x^{2}+y^{2}\right) \mathrm{d} m$.
(2) $I_{a, y}=\iint x^{2} \mathrm{~d} x \mathrm{~d} y$.
${ }^{(3)} I_{p}=\iint\left(x^{2}+y^{2}\right) \mathrm{d} x \mathrm{~d} y$.

(d) Thermodynamics

thermodynamic temperature common temperature linear expansivity: $l^{-1} \mathrm{~d} l / \mathrm{d} T$ cubic expansivity:
$V^{-1} \mathrm{~d} V / \mathrm{d} T$
heat; quantity of heat work; quantity of work
heat flow rate
thermal conductivity heat capacity specific heat capacity: C / m specific heat capacity at constant pressure
T... Θ specific heat capacity at t, θ constant volume
$\alpha, \lambda \quad$ ratio $c_{p} / c_{V} \quad \gamma, \kappa$
thermal diffusivity: $\lambda / \rho c_{p} \quad \alpha$
α, γ entropy S
q, Q internal energy $U \ldots E$
w, W enthalpy: $U+p V \quad H$
$\Phi \ldots q$ Helmholtz function: $U-T S \quad A, F$
$\lambda \ldots k$ Gibbs function: $U+p V-T S$
G
C Massieu function: $-A / T \quad J$
c Planck function: $-G / T \quad Y$
specific entropy: $S / m \quad s$
c_{p} specific internal energy: $U / m \quad u . . e$
[Note: A, B denotes no preference; $A \ldots B$ denotes A preferred]
specific enthalpy ${ }^{(1)}: H / m$
specific Helmholtz function: A / m
specific Gibibs function: G / m
Joule-Thomson coefficient: $(\partial T / \partial P)_{H}$

$$
\mu, \mu_{\mathbf{J T}}
$$

isothermal compressibility:
$-V^{-1}(\partial V / \partial p)_{T}$
h
a, f
g
μ, μ_{JT}
$\kappa, \kappa_{\boldsymbol{T}}$$|$
\hbar
thermal diffusion ratio
thermal diffusion factor
thermal diffusion coefficient
κ_{S}
α
k_{T}
α_{T}
D_{T}
isentropic compressibility:
$-V^{-1}(\partial V / \partial p)$
s

(e) Electricity and magnetism ${ }^{(2)}$

electric charge; quantity of electricity
electric current: $\mathrm{d} Q / \mathrm{d} t$
charge density: Q / V
surface charge density: Q / A
electric field strength
electric potential
electric potential difference
electromotive force
electric displacement
electric flux
capacitance
permittivity: $D=\epsilon E$
electric constant; permittivity of a vacuum
relative permittivity ${ }^{(3)}: \epsilon / \epsilon_{0}$
electric susceptibility: $\epsilon_{\mathrm{r}}-1$
electric polarization: $D-\epsilon_{0} E$
electric dipole moment
electric current density
magnetic field strength
magnetic potential difference
magnetomotive force: $\oint H_{s} \mathrm{~d} s$
magnetic flux density;
magnetic induction
magnetic flux
magnetic vector potential
self inductance
mutual inductance
coupling coefficient: $L_{12} /\left(L_{1} L_{2}\right)^{\frac{1}{2}} \quad k$
leakage coefficient: $1-k^{2}$
σ
permeability : $\boldsymbol{B}=\boldsymbol{\mu} \boldsymbol{H} \quad \mu$
magnetic constant; permeability
of a vacuum
relative permeability: $\mu / \mu_{0} \quad \mu_{\mathrm{r}}$
magnetic susceptibility: $\mu_{\mathrm{r}}-1 \quad \mathcal{X}_{\mathrm{m}}$
electromagnetic moment:
$\boldsymbol{T}=\boldsymbol{m} \times \boldsymbol{B}$
$m 2$
magnetization: $\left(\boldsymbol{B} / \mu_{0}\right)-\boldsymbol{H} \quad \boldsymbol{M}$
magnetic polarization: $\boldsymbol{B}-\mu_{0} \boldsymbol{H} \quad \boldsymbol{J}$
electromagnetic energy density w
Poynting vector: $\boldsymbol{E} \times \boldsymbol{H} \boldsymbol{S}$
speed of propagation of electro-
magnetic waves in vacuum c
resistance $\quad R$
resistivity: $\boldsymbol{E}=\rho \boldsymbol{J} \quad \rho$
conductivity: $1 / \rho \quad \gamma, \sigma$
reluctance: $U_{\mathrm{m}} / \Phi \quad R, R_{\mathrm{m}}$
permeance: $\mathbf{1} / \boldsymbol{R}_{\mathrm{m}} \quad \stackrel{1}{\mathrm{~m}}$
number of turns N
number of phases m
number of pairs of poles $\quad p$
loss angle δ
phase displacement ϕ
impedance: $\boldsymbol{R}+\mathbf{i} X \quad Z$
reactance: $\operatorname{Im} Z \quad X$
resistance: $\operatorname{Re} \boldsymbol{Z} \quad \boldsymbol{R}$
$M, L_{12} \mid$ quality factor: $|X| / R \quad Q$
[Note: A, B denotes no preference; $A \ldots B$ denotes A preferred]
admittance: $1 / Z$
susceptance: $\operatorname{Im} Y$
conductance: $\operatorname{Re} \boldsymbol{Y}$
Y
B
$G$$|$

(f) Light and related electromagnetic radiation

The same symbol is often used for a pair of corresponding radiant and luminous quantities. Subscripts efor radiant and v for luminous may be used when necessary io distinguish these quantities.
velocity of electrumagnetic
waves in vacuum
radiant energy
radiant flux; radiant power radiant intensity
radiance
radiant exitance
irradiance
emissivity
quantity of light
luminous flux
luminous intensity
luminance
luminous exitance
c
Q, Q_{e}
$\Phi, \Phi_{\mathrm{e}} \ldots P^{2}$
I, I_{e}
L, L_{e}
M, M_{e}
E, E_{e}
ϵ
Q, Q_{v}
Φ, Φ_{v}
I, I_{v}
L, L_{v}
M, M_{v}

illuminance; illumination	E, E_{v}
light exposure: $\int E \mathrm{~d} t$	H
luminous efficacy: $\Phi_{\mathrm{v}} / \Phi_{\mathrm{e}}$	K
absorption. factor;	
absorptance: $\Phi_{\mathrm{a}} / \Phi_{\mathrm{o}}$	α
reflexion factor;	ρ
reflectance: $\Phi_{\mathrm{r}} / \Phi_{0}$	
transmission factor;	τ
transmittance: $\Phi_{\text {tr }} / \Phi_{0}$	μ
linear extinction coefficient	a
linear absorption coefficient	n
refractive index	R
refraction: $\left(n^{2}-1\right) V /\left(n^{2}+2\right)$	α
angle of optical rotation	

(g) Acoustics

velocity of sound
velocity of longitudinal waves
velocity of transverse waves group velocity sound energy flux sound intensity
power, active
power, reactive
power, apparent

For a more complete list of symbols for acoustic quantities see the Bibliography, §X.1.2, Part VII: 1965.

(h) Physical chemistry

relative atomic mass of an element ('atomic weight') (1)

c	reflexion coefficient: $P_{\mathrm{r}} / P_{\mathbf{0}}$	ρ
$c_{\mathbf{1}}$	acoustic absorption	
ε_{t}	coefficient: l- ρ	
c_{g}	transmission coefficient: $P_{t \mathbf{r}} / P_{\mathbf{0}}$	$\alpha_{\mathrm{a}} \ldots \alpha$
P	dissipation coefficient: $\alpha_{\mathrm{a}}-\tau$	τ
I, J	loudness level	δ

(1) The ratio of the average mass per atom (molecule) of the natural isotopic composition of an element (the elements) to $1 / 12$ of the mass of an atom of the nuclide ${ }^{12} \mathrm{C}$.

Examples : $A_{r}(\mathrm{~K})=39.102 \quad A_{r}(\mathrm{Cl})=35.453 \quad M_{r}(\mathrm{KCl})=74.555$
The concept of relative atomic or molecular mass may be extended to other specified isotopic compositions, but the natural isotopic composition is assumed unless some other composition is specified.
[Note: A, B denotes no preference; $A . . . B$ denotes A preferred]
amount of substance
molar mass: m / n
molar volume: V / n
molar internal energy: U / n
molar enthalpy: H / n
molar heat capacity: C / n
at constant pressure: C_{p} / n
at constant volume: C_{V} / n
molar entropy: S / n
molar Helmholtz function: A / n
molar Gibbs function: G / n
(molar) gas constant
compression factor: $p V_{m} / R T$
mole fraction of substance F :
mass fraction of substance B
volume fraction of substance B
molality of solute B:
(n_{B} divided by mass of solvent)
concentration ('molarity') of solute B: n_{B} / V
chemical potential of
substance B : $\left(\partial G / \partial n_{B}\right)_{T, p}, n_{G}, \ldots$
absolute activity of sub-
stance B: $\exp \left(\mu_{\mathrm{B}} / R T\right)$
partial pressure of substance B
in a gas mixture: $x_{\mathrm{B}}^{\mathrm{g}} p$
fugacity of substance B in a gas
mixture: $\lambda_{\mathrm{B}} \lim _{p \rightarrow 0}\left(x_{\mathrm{B}} p / \lambda_{\mathrm{B}}\right) \quad f_{\mathrm{B}} \ldots p_{\mathrm{B}}^{*}$
relative activity of substance $B \quad a_{B}$
activity coefficient (mole
fraction basis)
activity coefficient (molality
basis)
activity coefficient
(concentration basis)
osmotic coefficient
osmotic pressure
surface concentration
electromotive force
${ }^{(1)}$ Formerly called specific conductance.

Faraday constant F
charge number of ion i
velocity of ion $i \quad \nu_{i}$
electric mobility of ion i: $v_{i}=u_{i} E \quad u_{i}$
electrolytic conductivity ${ }^{(1)}: J=\kappa E \quad \kappa$
molar conductance of electrolyte:
κ / c
transport number of ion i $\quad t_{1}$
molar conductance of ion i : $t_{i} \Lambda \quad \lambda_{1}$
overpotential η
exchange current density j_{0}
electrokinetic potential ζ
intensity of ligh $\quad I$
transmittance: $I / I_{0} \quad T$
absorbance ${ }^{(2)}:-\lg T \quad A$
(linear) absorption coefficient: $A / l \quad a$
molar (linear) absorption
coefficient: $A / l c_{\mathrm{B}}$
angle of optical rotation α
specific optical rotatory power: $\quad \alpha_{m}$
$\alpha V / m l$
molar optical rotatory power:
$\alpha / c_{B}{ }^{l}$
molar refraction:
($\left.n^{2}-1\right) V_{\mathrm{m}} /\left(n^{2}+2\right) \quad R_{\mathrm{m}}$
stoichiometric coefficient of
molecules B (negative for
reactants, positive for
products)
ν_{B}
general equation for a chemical
reaction $\quad 0=\Sigma_{B} \nu_{B} B$
affinity of a reaction: $-\Sigma_{B} \nu_{B} \mu_{B} \quad$ A... \mathscr{A}
equilibrium constant K
degree of dissociation $\quad \alpha$
extent of reaction: $\mathrm{d} \xi=\mathrm{d} n_{\mathrm{B}} / \nu_{\mathrm{B}} \quad \xi, \vec{J}$
rate of reaction: $\mathrm{d} \xi / \mathrm{d} t$
rate of reaction: $\mathrm{d} \xi / \mathrm{d} t$
rate constant of a reaction
activation energy of a reaction
${ }^{(2)}$ Formerly called optical density.
[Note: A, B denotes no preference; $A \ldots B$ denotes A preferred]

(i) Molecular physics

Avogadro constant number of molecules	$\begin{array}{r} L, N_{\mathrm{A}} \\ N \end{array}$	$1 / k T$ in exponential functions partition function	$\begin{array}{r} \beta \\ Q, Z \end{array}$
number density of molecules: N	ules: $N / V \quad n$	grand partition function	Ξ
molecular m	m	statistical weight	g
molecular velocity c	$\boldsymbol{c}\left(c_{x}, c_{y}, c_{z}\right)$,	symmetry number	σ, s
	$\boldsymbol{u}\left(u_{x}, u_{y}, u_{z}\right)$	dipole moment of molecule	p, μ
molecular position	$r(x, y, z)$	quadrupole moment of molecule	Θ
molecular momentum p($\boldsymbol{p}\left(p_{x}, p_{y}, p_{z}\right)$	polarizability of molecule	α
average velocity $\langle c\rangle$,	$\langle c\rangle,\langle\boldsymbol{u}\rangle, \boldsymbol{c}_{\boldsymbol{0}}, \boldsymbol{u}_{0}$	Planck constant	h
average speed $\langle c\rangle$	$\langle c\rangle,\langle u\rangle, \bar{c}, \bar{u}$,	Planck constant divided by 2π	\hbar
most probable speed	\hat{c}, \hat{u}	characteristic temperature	Θ
mean free path	l, λ	Debye temperature: $h \nu_{\mathrm{y}} / k$	Θ_{D}
molecular attraction energy	rgy	Einstein temperature: $h \nu_{\mathrm{E}} / k$	$\Theta_{\text {E }}$
interaction energy between		rotational temperature: $h^{2} / 8 \pi^{2} I k$ vibrational temperature: $h \nu / k$	$\Theta^{\Theta_{r}}$
velocity distribution function:	ction:	Stefan-Boltzmann constant:	
$N / V=\int f \mathrm{~d} c_{x} \mathrm{~d} c_{y} \mathrm{~d} c_{z}$	$f(c)$	$2 \pi^{5} k^{4} / 15 c^{2} h^{3}$	σ
Boltzmann function	H	first radiation constant ${ }^{(1)}$:	
generalized coordina	q	$\pi h c^{2}$	c_{1}
generalized momentum	p	second radiation constant: $h c / k$	c_{2}
volume in phase space	Ω	rotational quantum number	J,K
Boltzmann constant	k	vibrational quantum number	v

(i) Atomic and nuclear physics

nucleon number; mass number atomic number; proton number neutron number: $A-Z$
(rest) mass of atom
unified atomic mass constant:
$m_{\mathrm{a}}\left({ }^{12} \mathrm{C}\right) / 12$
(rest) mass of electron
(rest) mass of proton
(rest) mass of neutron
elementary charge (of proton)
Planck constant
Planck constant divided by 2π
Bohr radius: $h^{2} / \pi \mu_{0} c^{2} m_{e} e^{2}$
Rydberg constant: $\mu_{0}^{2} m_{\mathrm{e}} e^{4} c^{3} / 8 h^{3}$
magnetic moment of particle
A
Z
N
m_{a}
m_{u}
m_{e}
m_{n}
m_{n}
e
h
\hbar
a_{0}
R_{∞}
μ

[^0][Note: A, B denotes no preference; $A . . . B$ denotes A preferred]
spin angular momentum quantum number total angular momentum quantum number nuclear spin quantum number hyperfine structure quantum number
principal quantum number magnetic quantum number fine structure constant: $\mu_{0} e^{2} c / 2 h$ electron radias: $\mu_{0} e^{2} / 4 \pi m_{\mathrm{e}}$ Compton wavelength: $h / m c$
S, s_{i}
J, j_{i}
I, J
F
n, n_{1}
M, m_{1}
α
r_{e}
mass excess: $m_{\mathrm{a}}-A m_{\mathrm{u}}$
packing fraction: $\Delta / A m_{\mathbf{u}}$ mean life
level width: $h / 2 \pi \tau \quad \Gamma$
activity: $-\mathrm{d} N / \mathrm{d} t \quad A$
specific activity: $A / m \quad a$
decay constant: $A / N \quad \lambda$
half-life: $(\ln 2) / \lambda$
disintegration energy
spin-lattice relaxation time
spin-spin relaxation time
indirect spin-spin coupling

(k) Nuclear reactions and ionizing radiations

reaction energy
cross section
macroscopic cross section
impact parameter
scattering angle
internal conversion coefficient
linear attenuation coefficient

(l) Quantum mechanics

complex conjugate of Ψ probability density: $\Psi * \Psi$ probability current denaity:
$(h / 2 \pi \mathrm{i} m)\left(\Psi^{*} \nabla \Psi-\Psi \nabla \Psi^{*}\right)$
charge density of electrons: $-e \boldsymbol{P}$ electric current density of electrons: $-e S$
expectation value of A commutator of A and B : $\boldsymbol{A} B-\boldsymbol{B} A$

σ
Σ
θ, ϕ
α
μ, μ_{I}
atomic attenuation coefficient mass attenuation coefficient linear stopping power atomic stopping power linear range recombination coefficient
μ
μ_{m}
S, S_{1}
S_{a}
R, R_{1}
α
[Note: A, B or $A ; B$ denote no preference; $A \ldots B$ denotes A preferred]

(m) Soilid state physics

(n) Molecular spectroscopy ${ }^{(2)}$

quantum number
of component of electronic orbital angular momentum vector along symmetry axis
of component of el ϵ ctronic spin along symmetry axis
Σ, σ_{i}
of total electronic angular momentum vector along symmetry axis $\quad \Omega, \omega_{\mathbf{i}}$
of electronic spin S
of nuclear spin $\quad I$
of vibrational modes v
of vibrational angular momentum (linear moleeules) $\quad l$
of total angular momentum (excluding nuclear spin) J
of component of J in direction of external field $\quad M, M_{J}$
of component of S in direction of external field
of total angular momentum (including nuclear spin: $\boldsymbol{F}=\boldsymbol{J}+\boldsymbol{I}$)
of component of F in direction of external field $\quad M_{F}$
of component of I in direction of external field $\quad M_{I}$
(1) Braces \{ \} and angle brackets < > are used to enclose symmetry-related sets (forms) of planes and directions respectively. Further details regarding crystallographic notation can be found in the tables listed in the Bibliography, §X.2.2.
(2) Further details can be found in the report listed in the Bibliography, §X.2.3.
quantum number (cont.)
of component of angular momentum along axis (linear and symmetric top molecules; excluding electron- and nuclear spin; for linear molecules $K=|\Lambda+l|)$
of total angular momentum (linear and symmetric top molecules; excluding electron- and nuclear spin: $\left.J=N+S{ }^{(1)}\right)$
of component of angular momentum along symmetry axis (linear and symmetric top molecules; excluding nuclear spin; for linear molecules: $\left.P=|K+\Sigma|^{(2)}\right)$
degeneracy of vibrational mode
electronic term: $E_{\mathrm{e} /} / h c^{(3)} \quad T_{\mathrm{e}}$
vibrational term: $E_{\text {vib }} / h c$
coefficients in expression for vibrational term for diatomic molecule:
$G=\sigma_{\mathrm{e}}\left(v+\frac{1}{2}\right)-x \sigma_{\mathrm{e}}\left(v+\frac{1}{2}\right)^{2}$

$$
\sigma_{\mathrm{e}} \text { and } x \sigma_{\mathrm{e}}
$$

coefficients in expression for vibrational term for polyatomic molecule:

$$
G=\Sigma_{\mathrm{j}} \sigma_{\mathrm{j}}\left(v_{\mathrm{j}}+\frac{1}{2} d_{\mathrm{j}}\right)+\frac{1}{2} \Sigma_{\mathrm{j}} \Sigma_{\mathrm{k}} x_{\mathrm{jk}}\left(v_{\mathrm{j}}+\frac{1}{2} d_{\mathrm{j}}\right)\left(v_{\mathrm{k}}+\frac{1}{2} d_{\mathrm{k}}\right)
$$

rotational term: $E_{\text {rot }} / h c$
moment of inertia of diatomic molecule
rotational constant of diatomic molecule: $h / 8 \pi^{2} c I$
principal moments of inertia of polyatomic molecule ($I_{\mathrm{A}} \leqslant I_{\mathrm{B}} \leqslant I_{\mathrm{C}}$)
rotational constants of polyatomic molecule: $A=h / 8 \pi^{2} c I_{\mathrm{A}}$, etc.
total term: $T_{\mathrm{e}}+G+F$

1.2.11. Mathematical operations on physical quantities

Addition and subtraction of two physical quantities are indicated by

$$
a+b \text { and } a-b
$$

Multiplication of two (scalar ${ }^{(4)}$) physical quantities may be indicated in one of the following ways:

$$
a b \quad a b \quad a \cdot b \quad a \times b \text {. }
$$

Division of one quantity by another quantity may be indicated in one of the following ways:

$$
\frac{a}{b} \quad a / b \quad a b^{-1}
$$

or in any of the other ways of writing the product of a and b^{-1}.
These procedures can be extended to cases where one of the quantities or both are themselves products, quotients, sums, or differences of other quantities.

Brackets should be used in accordance with the rules of mathematics. If the solidus is used to separate the numerator from the denominator and if there is any doubt where the numerator starts or where the denominator ends, brackets should be used.

[^1]Examples:

Expressions with a
horizontal rule

$$
\begin{aligned}
& \frac{a}{b c d} \\
& \frac{2}{9} \sin k x, \frac{1}{2} R T \\
& \frac{a}{b}-c \\
& \frac{a}{b-c} \\
& \frac{a-b}{c-d} \\
& \frac{a}{c}-\frac{b}{d}
\end{aligned}
$$

Same expressions with a solidus
$a / b c d$
$(2 / 9) \sin k x, R T / 2$
$a / b-c$
$a /(b-c)$
$(a-b) /(c-d)$
$a / c-b / d$

Remark. It is recommended that in expressions like:

$$
\begin{array}{ll}
\sin \left\{2 \pi\left(x-x_{0}\right) / \lambda\right\} & \exp \left\{\left(r-r_{0}\right) / \sigma\right\} \\
\exp \{-V(r) / k T\} & \sqrt{ }\left(\epsilon / c^{2}\right)
\end{array}
$$

the argument should always be placed between brackets, except when the argument is a simple product, for example: $\sin k x, \sin 2 \pi \nu t$.

A list of recommended symbols for mathematical operators and mathematical constants will be found in Part II.

I.3. Units and symbols for units

1.3.1. The International System of Units (SI)

The International System of Units (SI) comprises the $S I$ units and the $S I$ prefixes.

The SI units are of three kinds : base, supplementary, and derived. There are seven base units (see §§I.3.2 and I.3.3), one for each of the seven physical quantities: length, mass, time, electric current, thermodynamic temperature, luminous intensity, and amount of substance, which are regarded as dimensionally independent. There are two supplementary units (see §I.3.4): one for plane angle and one for solid angle. The derived unit for any other physical quantity is that obtained by the dimensionally appropriate multiplication and division of the base units (see §I.3.6). Fifteen of the derived units have special names and symbols (see §I.3.5).

There is one and only one SI unit for each physical quantity. Decimal multiples of these units may, however, be constructed by use of the fourteen SI prefixes (see §I.3.7).

1.3.2. Definitions of the $S I$ base units

metre: The metre is the length equal to 1650763.73 wavelengths in vacuum of the radiation corresponding to the transition between the levels $2 p_{10}$ and $5 d_{5}$ of the krypton-86 atom.
kilogiam: The kilogram is the unit of mass; it is equal to the mass of the international prototype of the kilogram.
second: The second is the duration of 9192631770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium-133 atom.
ampere: The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 metre apart in vacuum, would produce between these conductors a force equal to 2×10^{-7} newton per metre of length.
kelvin: The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of the thermodynamic temperature of the triple point of water.
candela: The candela is the luminous intensity, in the perpendicular direction, of a surface of $1 / 600000$ square metre of a black body at the temperature of freezing platinum under a pressure of 101325 newtons per square metre.
mole: The mole is the amount of substance of a system which contains as many elennentary entities as there are atoms in 0.012 kilogram of carbon 12.

Note. When the mole is used, the elementary entities must be specified and may be atoms, molecules, ions, electrons, other particles, or specified groups of such particles.

Examples:

1 mole of HgCl has a mass equal to 0.23604 kilugram.
1 mole of $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$ has a mass equal to 0.47208 kilogram.
1 mole of e^{-}has a mass equal to 5.4860×10^{-7} kilogram.
1 mole of a mixture containing $\frac{2}{3}$ mole of H_{2} and $\frac{1}{3}$ mole of O_{2} has a mass equal to 0.0120102 kilogram.

1.3.3. Names and symbols for $S I$ base units

Physical quantity
length
mass
time
electric current
thermodynamic temperature
luminous intensity
amount of substance

Name of SI unit
metre
kilogram
second
ampere
kelvin
candela mole

Symbol for SI unit
m kg s A

K
cd
mol

1.3.4. Names and symbols for $S I$ supplementary units

Physical quantity	Name of SI unit	Symbol for SI unit
plane angle	radian	rad
solid angle	steradian	sr

1.3.5. Special names and symbols for $S I$ derived units

Physical quantity	Name of. SI unit	Symbol for SI unit	Definition of SI unit	Equivalent form(s) of SI unit
energy	joule	J	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-2}$	Nm
force	newton	N	$\mathrm{mkg} \mathrm{s}{ }^{-2}$	Jm^{-1}
pressure	pascal	Pa	$\mathrm{m}^{-1} \mathrm{~kg} \mathrm{~s}^{-2}$	$\mathrm{Nm}^{-2}, \mathrm{Jm}^{-3}$
power	watt	W	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-3}$	$\mathrm{Js}^{\mathbf{- 1}}$
electric charge	coulomb	C	sA	As
electric potential difference	volt	V	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-3} \mathrm{~A}^{-1}$	$\mathrm{JA}^{\mathbf{- 1}} \mathrm{s}^{\mathbf{- 1}}, \mathrm{JC}^{-1}$
electric resistance	ohm	Ω	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-3} \mathrm{~A}^{-2}$	VA^{-1}
electric conductance	siemens	S	$\mathrm{m}^{-2} \mathrm{~kg}^{-1} \mathrm{~s}^{3} \mathrm{~A}^{2}$	Ω^{-1}, A^{-1}
electric capacitance	farad	F	$\mathrm{m}^{-2} \mathrm{~kg}^{-1} \mathrm{~s}^{4} \mathrm{~A}^{2}$	$A s V^{-1}, C V^{-1}$
magnetic flux	weber	Wb	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~A}^{-1}$	Vs
inductance	henry	H	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~A}^{-2}$	$\mathrm{V} \mathrm{A}^{-1} \mathrm{~s}$
magnetic flux density	tesla	T	$\mathrm{kg} \mathrm{s}^{-2} \mathrm{~A}^{-1}$	V $\mathrm{m}^{-2}, \mathrm{~Wb} \mathrm{~m}^{-2}$
luminous flux	lumen ${ }^{(1)}$	lm	cdsr	
illumination	$\underline{l u x}{ }^{(1)}$] ${ }^{\text {r }}$	$\mathrm{m}^{-2} \mathrm{cdsr}$	
frequency	hertz	Hz	s^{-1}	

(1) In the definition given here for these units, the steradian (sr) is treated as a base unit
1.3.6. Examples of $S I$ derived units and unit symbols for other quantities
(This list is merely illustrative)

Physical quantity
area
volume
wavenumber
radioactivity
density
speed; velocity
angular velocity
acceleration
kinematic viscosity
concentration (of amount
of substance)
specific volume
molar volume
dynamic viscosity
moment of force
surface tension
heat flux density
heat capacity
thermal conductivity energy density molar heat capacity electric field strength magnetic fielč strength
electric charge density
permittivity
current density
permeability
luminance

SI unit
square metre
cubic metre
1 per metre
1 per second
kilogram per cubic metre metre per second
radian per second
metre per second squared
square metre per second
mole per cubic metre
cubic metre per kilogram
cubic metre per mole
pascal second
metre newton
newton per metre
watt per square metre
joule per kelvin
watt per metre kelvin
joule por cubic metre
joule per kelvin mole
volt per metre
ampere per metre
coulomb per cubic metre
farad per metre
ampere per square metre
henry per metre
candela per square metre

A symbol for SI unit
m^{2}
m^{3}
m^{-1}
s^{-1}
$\mathrm{kg} \mathrm{m}^{-3}$
m^{-1}
rads^{-1}
ms^{-2}
$m^{2} \mathrm{~s}^{-1}$
molm^{-3}
$\mathrm{m}^{3} \mathrm{~kg}^{-1}$
$\mathrm{m}^{3} \mathrm{~mol}^{-1}$
Pas
Nm
Nm^{-1}
W m^{-2}
$J K^{-1}$
$W m^{-1} K^{-1}$
$\mathrm{J} \mathrm{m}^{-3}$
$\mathrm{JK} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
$V m^{-1}$
$A m^{-1}$
Cm^{-3}
Fm m^{-1}
Am^{-2}
Hm^{-1}
$\mathrm{cd} \mathrm{m}^{-2}$
1.3.7. $S I$ prefixes

The following profixes may be used to construct decimal multiples of units.

Multiple	Prefix	Symbol	Multiple	Prefix	Symbol
10^{-1}	deci	d	10	deca	da
10^{-2}	centi	c	10^{2}	hecto	h
10^{-3}	milli	m	10^{3}	kilo	k
10^{-6}	micro	μ	10^{6}	mega	M
10^{-9}	nano	n	10^{9}	giga	G
10^{-12}	pico	p	10^{12}	tera	T
10^{-15}	femto	f			
10^{-18}	atto	a			

Decimal multiples of the kilogram, kg , should be formed by attaching an SI prefix not to kg but to g , in spite of the kilogram and not the gram being the SI base unit.

Examples: mg not $\mu \mathrm{kg}$ for $10^{-6} \mathrm{~kg}$
Mg not kkg for $10^{3} \mathrm{~kg}$
A symbol for an SI prefix may be attached to the symbol for an SI base unit (§I.3.3), or for an SI supplementary unit (§I.3.4), or for an SI derived unit having a special name and symbol (§I.3.5).

Examples: cm ns $\mu \mathrm{A} \mathrm{mK}$ mol $\mu \mathrm{rad} \mathrm{MHz}$ daN kPa GV $\mathrm{M} \Omega$
An SI prefix is also sometimes attached to the symbol for a non-SI unit (see §§工.3.8 to I.3.10).

Examples: ml hbar kG kcal MeV
Compound prefixes should not be used.
Example: nm but not mum for $10^{-9} \mathrm{~m}$
A combination of prefix and symbol for a unit is regarded as a single symbol which may be raised to a power without the use of brackets.

Example: cm^{2} alwàys means $(0.01 \mathrm{~m})^{2}$ and never $0.01 \mathrm{~m}^{2}$

1.3.8. Decimal multiples of SI units having special names

These names are not part of the SI. It is recognized that their use may be continued for some time but it is recommended that except in special circumstances they should be progressively abandoned in scientific publications. The following list is not exhaustive.

Physical quantity	Name of unit	Symbol for unit	Definition of unit
length	ångström	\AA	$10^{-10} \mathrm{~m}=10^{-1} \mathrm{~nm}$
length	micron	$\mu \mathrm{m}{ }^{(1)}$	$10^{-6} \mathrm{~m}$
are?	barn	b	$10^{-28} \mathrm{~m}^{2}$
volume	litre ${ }^{(2)}$	1	$10^{-3} \mathrm{~m}^{3}=\mathrm{dm}^{3}$
mass	tonne	t	$10^{3} \mathrm{~kg}=\mathrm{Mg}$
force	dyne	dyn	$10^{-5} \mathrm{~N}$
pressure	bar	bar	$10^{5} \mathrm{~Pa}$

${ }^{(1)}$ The symbols μ and $m \mu$, still unfortunately used by some spectroscopists and biologists, should give place to $\mu \mathrm{m}$ (micrometre) and nm (nanometre) respectively.
${ }^{(2)}$ By decision of the twelfth General Conference of Weights and Measures in October 1964 the old definition of the litre (leading to the value $1.000028 \mathrm{dm}^{3}$) was rescinded and the word litre reinstated as a special name for the cubic decimetre. Neither the word litre nor its symbol 1 should be used to express results of high precision.

Physical quantity	Name of unit
energy	erg
kinematic viscosity	stokes
dynamic viscosity	poise
magnetic flux	maxwell
magnetic flux density (1)	gauss

Symbol for	
unit	Definition of unit
erg	$10^{-7} \mathrm{~J}$
St	$10^{-4} \mathrm{~m}^{2} \mathrm{~s}^{-1}$
P	$10^{-1} \mathrm{Pas}$
Mx	$10^{-8} \mathrm{~Wb}$
G	$10^{-4} \mathrm{~T}$

1.3.9. Other units now exactly defined in terms of the SI units

These units are not part of the SI. It is recognized then their use may be continued for some time but it is recommended that excont in sjecial circumstances they should be progressively abandoned in scientine prblications. Most of these units should not be used to form compound units. 'ithe sollowing list is by no means exhaustive. Each of the definitions given in the fourth column is exact.

(1) The unit of magnetic flux density formerly called gamma, symbol γ, is equal to 1 nTr.
${ }^{(2)}$ The ${ }^{\circ}$ sign and the letter following form one symbol and there should be no space between them. Example: $25^{\circ} \mathrm{C}$ not $25^{\circ} \mathrm{C}$.
${ }^{(3)}$ The Celsius temperature is the excess of the thermodynamic temperature over 273.15K.
Symbol for
Physical quantity Name of unit unit Definition of unit

Fahrenheit

temperature $\left(t_{\mathrm{F}}\right)^{(1)}$	degree Fahrenheit	${ }^{\circ} \mathrm{F}{ }^{(2)}$	$(5 / 9) \mathrm{K}$
radioactivity	curie	Ci	$3.7 \times 10^{10} \mathrm{~s}^{-1}$
radiation ${ }^{(3)}$	rad	$\mathrm{rad}{ }^{(4)}$	$10^{-2} \mathrm{Jkg}^{-1}$
	röntgen	R	$2.58 \times 10^{-4} \mathrm{Ckg}^{-1}$

I.3.10. Units defined in terms of certain physical constants

These units are not part of the SI. The factors for conversion of these units to SI units are subject to change in the light of new experimental measurements of the constants involved. Their use outside the restricted contexts to which they are appropriate should be discouraged. The following list is not exhaustive.

I.3.11. 'International' electric units

These units are obsolete, having been replaced by the 'absolute' (SI) units in 1948. The conversion factors which should be used with electric measurements quoted in 'international' units depend on where and when the instruments used to make the measurements were calibrated. The following two sets of conversion factors refer respectively to the 'mean international' units estimated by the ninth General Conference of Weights and Measures in 1948, and to the 'U.S. international' units estimated by the U.S. National Bureau of Standards as applying to instruments calibrated by them before 1948.

$$
\begin{aligned}
& 1 \text { 'mean international ohm' }=1.00049 \Omega \\
& 1 \text { 'mean international volt' }=1.00034 \mathrm{~V} \\
& 1 \text { 'U.S. international ohm' } \\
& =1.000495 \Omega \\
& 1 \text { 'U.S. international volt' }=1.000330 \mathrm{~V}
\end{aligned}
$$

${ }^{(1)}$ The Fahrenheit temperature is the excess of the thermodynamic temperature over $459.67^{\circ} \mathrm{R}$.
${ }^{(2)}$ The ${ }^{\circ}$ sign and the letter following form one symbol and there should be no space between them. Example: $25^{\circ} \mathrm{F}$ not $25^{\circ} \mathrm{F}$.
${ }^{(3)}$ A special unit which takes accoant of the relative potentials for damage by different radiations and other factors is the rem (acronym for radiation equivalent man).
${ }^{\text {(4) }}$ Whenever confusion with the symbol for the radian (angular measure) appears possible the symbol rd may be used.
I.3.12. Electric and magnetic units belonging to unit-systems other than the $S I$

Definitions of units used in the 'electrostatic CGS' and 'electromagnetic CGS' unit-systems can be found in either of two documents listed in the Bibliography, §X.1.2, Part V: 1965, or §X.1.5.

It appears that for many years to come a knowledge of the 'electromagnetic CGS' unit system will be a necessity for workers in magnetism, but for prantical purposes it is usually sufficient to note that 1 gauss (G) corresponds to $10^{-4} \mathrm{~T}$ and that 1 oersted (Oe) corresponds to $10^{3}(4 \pi)^{-1} \mathrm{Am}^{-1} \approx 79.5775 \mathrm{Am}^{-1}$.

I.3.13. Printing of symbols for units

The symbol for a unit should be printed in roman (upright) type, should remain unaitered in the plural, and should not be followed by a full stop except when it occurs at the end of a sentence.

Example: 5 cm but not 5 cms . and not 5 cm . and not 5 cms
The symbol for a unit derived from a proper name should begin with a capital roman (upright) letter.

Examples: J for joule and Hz for hertz
Any other symbol for a unit should be printed in lower case roman (upright) type.
Symbols for prefixes for units should be printed in roman (upright) type with no space between the prefix and the unit.

I.3.14. Multiplication and division of units

A product of two units may be represented in any of the ways:

$$
\mathrm{Nm} \quad \text { or } \quad \mathrm{N} \cdot \mathrm{~m} \quad \text { or } \quad \mathrm{N} \times \mathrm{m}
$$

The representation Nm is not recommended.
A quotient of two units may be represented in any of the ways:

$$
\mathrm{ms}^{-1} \text { or } \mathrm{m} / \mathrm{s} \text { or } \frac{\mathrm{m}}{\mathrm{~s}}
$$

cr in any of the other ways of writing the product of m and s^{-1}, but not ms^{-1}.
These rules may be extended to more complex groupings but more than one solidus (/) should not be used in the same expression unless parentheses are used to eliminate ambiguity.

Examples: $\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$ or $\mathrm{J} /(\mathrm{K} \mathrm{mol})$ but not $\mathrm{J} / \mathrm{K} / \mathrm{mol}$ $\mathrm{cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$ or $(\mathrm{cm} / \mathrm{s}) /(\mathrm{V} / \mathrm{cm})$ but not $\mathrm{cm} / \mathrm{s} / \mathrm{V} / \mathrm{cm}$.

1.4.1. Printing of numbers

I.4. Numbers

Numbers should be printed in upright type. The decimal sign between digits in a number should be a point (.) or a comma (,). To facilitate the reading of long numbers the digits may be grouped in threes about the decimal sign but no point or comma should ever be used except for the decimal sign.

Example: 2573.421736 but not 2,573.421,736
When the decimal sign is placed before the first digit of a number a zero should always be placed before the decimal sign.

Example: 0.2573×10^{4} but not $.2573 \times 10^{4}$
It is often convenient to print numbers with just one digit before the decimal sign.
Example: 2.573×10^{3}

I.4.2. Multirlication and division of numbers

The multiplication sign between numbers should be a cross (x).
Example: 2.3×3.4
Division of one number by another may be indicated in any of the ways:

$$
\frac{136}{273} \text { or } 136 / 273 \text { or } 136 \times(273)^{-1}
$$

These rules may be extended to more complex groupings, but more than one solidus (/) should never be used in the same expression unless parentheses are used to eliminate ambiguity.

Example: $(136 / 273) / 2.303$ or $136 /(273 \times 2.303)$ but never $136 / 273 / 2.303$

PART II
 RECOMMENDED MATHEMATICAL SYMBOLS

[Note: A, B denotes no preference; $A \ldots B$ denotes A preferred]

\begin{tabular}{|c|c|c|c|}
\hline equal to \& $=$ \& smaller than \& $<$

\hline not equal to \& \neq \& larger than \&

\hline identically equal to \& 三 \& smaller than or equal to \& \leqslant

\hline corresponds to \& $\widehat{\text { 人 }}$ \& larger than or equal to \& \geqslant

\hline approximately equal to \& \approx \& much smaller than \& \leqslant

\hline approaches \& \rightarrow \& much larger than \& $>$

\hline asymptotically equal to \& \simeq \& plus \& $+$

\hline proportional to \& \propto \& minus \&

\hline infinity \& ∞ \& plus or minus minus or plus \& \pm

\hline a multiplied by $b^{(1)}$ \& \& \& $a b, a \cdot b, a \times b$

\hline a divided by $b^{(1)}$ \& \& \& $a / b, \frac{a}{b}, a b^{-1}$

\hline magnitude of a \& \& \& $|a|$

\hline a raised to power n
sçuare root of a \& \& \& a^{n}
$a^{\frac{1}{2}}$,

a

\hline nth root of a \& \& \& $a^{1 / n}, a^{\frac{1}{n}}, \sqrt[n]{a}$

\hline mean value of a \& \& \& $\langle a\rangle, \vec{a}$

\hline factorial p (${ }^{\text {a }}$ \& \& \& p !

\hline binomial coofficient ${ }^{(3)}$ \& \& \& $\binom{n}{p}$

\hline
\end{tabular}

When letters of the alphabet are used to form mathematical operators (Examples : $\mathrm{d}, \Delta, \ln , \exp$) or as mathematical constants (Examples : e, π) they should be printed in roman (upright) type so as to distinguish them from the symbols for physical quantities which should be printed in italic (sloping) type
sum
product
function of x
limit to which $f(x)$ tends as x approaches a
$f(x), f(x)$
$\lim _{x \rightarrow a} f(x), \lim _{x \rightarrow a} f(x)$
${ }^{(1)}$ See also §T.2.11.
(2) $p!=1 \times 2 \times 3 \times \ldots \times(p-1) \times p$ where p is a positive iriteger.
(3) $\binom{n}{p}=n!/(n-p)!p!$ where n and p are positive integers and $n \geqslant p$ and where $0!=1$.
[Note: A, B denotes no preference; $A \ldots B$ denotes A preferred]
finite increment of x
Δx variation of x δx differential coefficient of $f(x)$ with respect to $x \quad \frac{\mathrm{~d} f}{\mathrm{~d} x}, \mathrm{~d} f / \mathrm{d} x, f^{\prime}(x)$ differential coefficient of ordor n of $f(x)$

$$
\frac{\mathrm{d}^{\mathrm{n}} f}{\mathrm{~d} x^{\mathrm{n}}}, \mathrm{~d}^{\mathrm{n}} f / \mathrm{d} x^{\mathrm{n}}, f^{(\mathrm{n})}(x)
$$

partial differential cosffecient of $f(x, y, \ldots)$ with respect to x
when y, \ldots are held constant

$$
\frac{\partial f(x, y, \ldots)}{\partial x},\left(\frac{\partial f}{\partial x}\right)_{y},(\partial f / \partial x)_{y}
$$

operator $\frac{\partial}{\partial x}$ or with single variable $\frac{\mathrm{d}}{\mathrm{d} x}$
D
the total differential of f
indefinite integral of $f(x)$ with respect to x
definite integral of $f(x)$ from $x=a$ to $x=b$
integral of $f(x)$ with respect to x round a closed contour exponential of x
base of natural logarithms
logarithm to the base a of x
natural logarithm of x
common logarithm of \boldsymbol{x}
binary logarithm of x
ratio of circumference to diameter of a circle

sine of x	$\sin x$
cosine of x	$\cos x$
tangent of x	$\tan x$
cotangent of x	$\cot x$
secant of x	$\sec x$
cosecant of x	$\operatorname{cosec} x$

inverse sine of x
inverse cosine of x
inverse tangent of x
inverse cotangent of x
inverse secant of x
inverse cosecant of x
hyperbolic sine of x
hyperbolic cosine of x
hyperbolic tangent of x
hyperbolic cotangent of x
hyperbolic secant of x
hyperbolic cosecant of x
$\arcsin x \ldots \sin ^{-1} x$
$\arccos x \ldots \cos ^{-1} x$
$\arctan x \ldots \tan ^{-1} x$
$\operatorname{arccot} x \ldots \cot ^{-1} x$
$\operatorname{arcsec} x \ldots \sec ^{-1} x$
$\operatorname{arccosec} x \ldots \operatorname{cosec}^{-1} x$
$\sinh x$
$\cosh x$ $\tanh x$ $\operatorname{coth} x$ $\operatorname{sech} x$ $\operatorname{cosech} x$
[Note: A, B denotes no preference; $A \ldots B$ denotes A preferred]
inverse hyperbolic sine of x inverse hyperbolic cosine of x inverse hyperbolic tangent of x inverse hyperbolic cotangent of x inverse hyperbolic secant of x inverse hyperbolic cosecant of x
complex operator: $\mathrm{i}^{2}+1=0$ real part of z imaginary $\mathrm{pa}_{2} \ddagger$ of z modulus of z argument of z complex conjugate of z
transpose of mairix A complex conjugate matrix of matrix A
Hermitian conjugate matrix of matrix A
vector
magnitude of vector A
scalar product of vectors A and B
vector product of vectors A and B
dyadic product of vectors \boldsymbol{A} and \boldsymbol{B}
differential vector operator
gradient of ϕ
divergence of A
curl of A
Laplacian of ϕ
d'Alembertian of ϕ
scalar product of tensors S and T
tensor product of tensors S and T
product of tensor S and vector \boldsymbol{A}
$\operatorname{arsinh} x \ldots \sinh ^{-1} x$
$\operatorname{arcosh} x \ldots \cosh ^{-1} x$
$\operatorname{artanh} x \ldots \tanh ^{-1} x$ $\operatorname{arcoth} x \ldots \operatorname{coth}^{-1} x$ $\operatorname{arsech} x \ldots \operatorname{sech}^{-1} x$ $\operatorname{arcosech} x \ldots \operatorname{cosech}^{-1} x$

PART III

CHEMICAL ELEMENTS, NUCLIDES, AND PARTTCLES

III.1. Definitions

A nuclide is a species of atoms identical as regards atomic number (proton number) and mass number (nucleon number). Two or more nuclides having the same atomic number but different mass numbers are called isotopes or isotopic nuclides. Two or more nuclides having the same mass number are called isobars or isobaric nuclides.

III.2. Symbols for elements and nuclides

Symbols for chemical elements should be written in roman type. The symbol is not followed by a full stop.

Examples: Ca, C, H, He
The attached numerals specifying a nuclide are as foilows:

$$
\text { mass number } 14 \mathrm{~N}_{2} \text { atoms/molecule }
$$

The atomic number may be placed in the left subscript position.
The right superscript position should be used, when required, to indicate ionic charge, state of excitation, or oxidation number.

Examples:

$$
\begin{aligned}
& \text { ionic charge: } \mathrm{Cl}^{-}, \mathrm{SO}_{4}^{2-}, \mathrm{Ca}^{2+}, \mathrm{PO}_{4}^{3-} \\
& \text { electronic excited states: } \mathrm{He}^{*}, \mathrm{NO}^{*} \\
& \text { nuclear excited states: } \\
& \text { oxidation number: } \mathrm{K}_{6} \mathrm{M}^{110} \mathrm{Mo}_{9} \mathrm{Mo}_{32} \mathrm{O}_{3}
\end{aligned}
$$

III.3. Symbols for particles and quanta

neutron	n	pion	π
proton	p	muon	μ
deuteron	d	electron	e
triton	t	neutrino	ν
α-particle	α	photon	γ

It is recommended that the following notation should be used:
Hyperons: Upright capital greek letters to indicate specific particles, e.g. Λ, Σ.
Nucleons: Upright lower case n and p to indicate neutron and proton respectively.

Mesons: Upright lower case greek letters to indicate specific particles, e.g. π, μ, τ.
Leptons: L-particles; e.g. e, v.
It is recommended that the charge of particles be indicated by adding the superscript + , , or 0 .

Examples:

$$
\pi^{+}, \pi^{-}, \pi^{0} ; \quad p^{+}, p^{-} ; \mathrm{e}^{+}, \mathrm{e}^{-}
$$

If with the symbols p and e no sign is shown then the symbols should refer to the positive proton and the negative electron respectively.

The symbol \sim above the symbol of a particle should indicate the corresponding antiparticle (e.g. \tilde{v} for anti-neutrino).

III.4. Notation for nuclear reactions

The meaning of the symbolic expression indicating a nuclear reaction should be the following:
initial
nuclide $\left(\begin{array}{ll}\text { incoming particle(s) } & \text { outgoing particle(s) } \\ \text { or quarita }\end{array}\right)$ final $\begin{aligned} & \text { or quanta }\end{aligned}$
Examples:

$$
\begin{array}{ll}
\left.{ }^{14} \mathrm{~N}(\alpha, p)\right)^{17} \mathrm{O} & { }^{59} \mathrm{Co}(\mathrm{n}, \gamma)^{60} \mathrm{Co} \\
{ }^{23} \mathrm{Na}(\gamma, 3 \mathrm{n}){ }^{20} \mathrm{Na} & { }^{31} \mathrm{P}(\gamma, \mathrm{pn})^{29} \mathrm{Si}
\end{array}
$$

PART IV
 QUANTUM STATES

IV.1. General rules

A letter symbol indicating the quantum state of a system should be printed in capital upright type. A letter symbol indicating the quantum state of a single electron should be printed in lower case upright type.

IV.2. Atomic spectroscopy

The letter symbols indicating quantum states are:

$$
\begin{array}{rlrl}
L, l & =0: \mathrm{S}, \mathrm{~s} & L, l & =4: \mathrm{G}, \mathrm{~g} \\
& =1: \mathrm{P} \mathrm{p} & & L, l \\
& =9: \mathrm{D}, \mathrm{~d} & & =8: \mathrm{L}, \mathrm{l} \\
& =3: \mathrm{F}, \mathrm{f} & & =6: \mathrm{I}, \mathrm{i}
\end{array}
$$

A right hand subscript indicates the total angular momentum quantum number J or j. A left hand superscript indicates the spin multiplicity $2 S+1$.

Examples: ${ }^{2} \mathrm{P}_{\frac{3}{2}}$ - state ($J=\frac{3}{2}$, mulliplicity 2)

$$
\mathrm{p}_{\frac{3}{2}}-\text { electron }\left(j=\frac{3}{2}\right)
$$

An atomic electron configuration is indicated symbolically by:

$$
(n l)^{\kappa}\left(n^{\prime} l^{\prime}\right)^{\kappa^{\prime}} \ldots .
$$

The quantum symbols s, p, d, f, \ldots are used instead of $l=0,1,2,3, \ldots$.
Example : the atomic configuration: $(1 \mathrm{~s})^{2}(2 \mathrm{~s})^{2}(2 \mathrm{p})^{3}$

IV.3. Molecular spectroscopy

The letter symbols indicating molecular electronic quantum states are for linear molecules:

$$
\begin{aligned}
\Lambda, \lambda & =0: \Sigma, \sigma \\
& =1: \Pi, \pi \\
& =2: \Delta: \delta
\end{aligned}
$$

and for non-linear molecules:

$$
\mathrm{A}, \mathrm{a} ; \mathrm{B}, \mathrm{~b} ; \mathrm{E}, \mathrm{e} ; \text { etc. }
$$

A left hand superscript indicates the spin multiplicity. For molecules having a symmetry centre the parity symbol g or u, indicating respectively symmetric or
antisymmetric behaviour on inversion, is attached as a right hand subscript. A + or - sign attached as a right hand superscript indicates the symmetry as regards reflexion in any plane through the symmetry axis of the molecules.

Examples: $\Sigma{ }_{\delta}^{+}, \Pi_{u},{ }^{2} \Sigma,{ }^{3} \Pi$, etc.
The letter symbols indicating the vibrational angular momer jates in the case of linear molecules are:

$$
\begin{aligned}
l & =0: \Sigma \\
& =1: \Pi \\
& =2: \Delta
\end{aligned}
$$

IV.4. Nuclear spectroscopy

The spin and parity assignment of a nuclear state is

$$
J^{\pi}
$$

where the parity symbol π is + for even and - for odd parity.
Examples:

$$
3^{+}, 2^{-}, \text {etc. }
$$

A shell model configuration is indicated symbolically by:

$$
(n l j)^{\kappa}\left(n^{\prime} l^{\prime} j^{\prime}\right)^{\kappa^{\prime}}
$$

where the first bracket refers to the proton shell and the second to the neutron shell. Negative values of κ or κ^{\prime} indicate holes in a completed shell. Instead of $l=0,1,2,3, \ldots$ the quantum state symbols s, p, d, f, \ldots are used.

Example:

The nuclear configuration $\left(1 \mathrm{~d} \frac{3}{2}\right)^{\mathbf{3}}\left(1 \mathrm{f} \frac{7}{2}\right)^{2}$.

IV.5. Spectroscopic transitions

The upper level and the lower level are indicated by ' and " respectively.
Examples:

$$
\hbar \nu=E^{\prime}-E^{\prime \prime} \quad \sigma=T^{\prime}-T^{\prime \prime}
$$

A spectroscopic transition should be indicated by writing the upper state first and the lower state second, connected by a dash in between.

Examples:

$$
\begin{array}{ll}
{ }^{2} \mathrm{P}_{\frac{1}{2}}-{ }^{2} \mathrm{~S}_{\frac{1}{2}} & \text { for an electronic transition } \\
\left(J^{\prime}, K^{\prime}\right)-\left(J^{\prime \prime}, K^{\prime \prime}\right) & \text { for a rotational transition } \\
v^{\prime}-v^{\prime \prime} & \text { for a vibrational transition }
\end{array}
$$

Absorption transition and emission transition may be indicated respectively by arrows \leftarrow and \rightarrow.

Examples:

$$
\begin{array}{ll}
\left(J^{\prime}, K^{\prime}\right) \leftarrow\left(J^{\prime \prime}, K^{\prime \prime}\right) & \text { absorption from }\left(J^{\prime \prime}, K^{\prime \prime}\right) \text { to }\left(J^{\prime}, K^{\prime}\right) \\
{ }^{2} \mathrm{P}_{\frac{1}{2}} \rightarrow{ }^{2} \mathrm{~S}_{\frac{1}{2}} & \text { emission from }{ }^{2} \mathrm{P}_{\frac{1}{2}} \text { to }{ }^{2} \mathrm{~S}_{\frac{1}{2}}
\end{array}
$$

The difference Δ between two quantum numbers should be that of the upper state minus that of the lower state.

Example:

$$
\Delta J=J^{\prime}-J^{\prime \prime}
$$

The indications of the branches of the rotation band should be as follows:

$$
\begin{aligned}
\Delta J=J^{\prime}-J^{\prime \prime} & =-2: \text { O-branch } \\
& =-1: \text { P-branch } \\
& =0: \text { Q-branch } \\
& =+1: \text { R-branch } \\
& =+2: \text { S-branch }
\end{aligned}
$$

PART V

NUCLEAR PHYSICS

V.1. Notation for covariant character of coupling

S	scalar coupling	A	axial vector coupling
V	vector coupling	P	pseudoscalar coupling
T	tensor coupling		

V.2. Character of transitions

Multipolarity of transition:
electric or magnetic $\begin{cases}\text { monopole } & \text { E0 or M0 } \\ \text { dipole } & \text { E1 or M1 } \\ \text { quadrupole } & \text { E2 or M2 } \\ \text { octupole } & \text { E3 or M3 } \\ 2^{n} \text {-pole } & \text { En or Mn }\end{cases}$
parity change in transition:
transition with parity change: yes
transition without parity change: no

V.3. Sign of polarization vector (Basel convention)

In nuclear interactions the positive polarization of particles with spin $\frac{1}{2}$ is taken in the direction of the vector product

$$
k_{\mathrm{i}} \times \boldsymbol{k}_{\mathrm{o}},
$$

where $\boldsymbol{k}_{\mathrm{i}}$ and \boldsymbol{k}_{0} are the circular wavevectors of the incoming and outgoing particles respectively.

PART VI
 THERMODYNAMIC RESULTS

Thermodynamic results for chemical or physical processes should be expressed by quoting the equation for the process (with such specification of the physical states of the participating substances as may be necessary) followed by the value of the change in the appropriate thermodynamic function.

Examples:

$$
\begin{array}{rlrl}
\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) & =\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ; & \Delta H(298.15 \mathrm{~K}) & =-285.83 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) & =2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ; & \Delta H(298.15 \mathrm{~K}) & =-571.66 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & =\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) ; & \Delta H(298.15 \mathrm{~K})=+44.01 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

The following symbols should be used to specify physical states. They should be printed in roman type and should be placed in parentheses after the formula of the substance as in the examples given above.
g gaseous
1 liquid
s solid
c crystalline
aq dissolved at effectively infinite dilution in water.

PART VII

GALVANIC CELLS

VII.1. The electromotive force of a cell

The ceil should be represented by a diagram, e.g.

$$
\mathrm{Zn}\left|\mathrm{Zn}^{2+}\right| \mathrm{Cu}^{2+} \mid \mathrm{Cu}
$$

The electromotive force is equal in sign and magnitude to the electrical potential of the metallic conducting lead on the right when that of the similar lead on the left is taken as zero, the circuit being open.

When the reaction of the cell is written as

$$
\frac{1}{2} \mathrm{Zn}+\frac{1}{2} \mathrm{Cu}^{2+} \rightarrow \frac{1}{2} \mathrm{Zn}^{2+}+\frac{1}{2} \mathrm{Cu}
$$

this implies a diagram so drawn that this reaction takes place when positive electricity flows through the cell from left to right. If this is the direction of the current when the cell is short-circuited, as in the present example, the electromotive force is positive.

If, however, the reaction is written as

$$
\frac{1}{2} \mathrm{Cu}+\frac{1}{2} \mathrm{Zn}^{2+} \rightarrow \frac{1}{2} \mathrm{Cu}^{2+}+\frac{1}{2} \mathrm{Zn}
$$

this implies the diagram

$$
\mathrm{Cu}\left|\mathrm{Cu}^{2+}\right| \mathrm{Zn}^{2+} \mid \mathrm{Zn}
$$

and the electromotive force of the cell so specified is negative.
VII.2. The electromotive force of a half cell and the so-called 'electrode potential'

The term 'electromotive force of a half cell' as applied to half cells written as follows:

$$
\begin{gathered}
\mathrm{Zn}^{2+} \mid \mathrm{Zn} \\
\mathrm{Cl}^{-} \mid \mathrm{Cl}_{2}, \mathrm{Pt} \\
\mathrm{Cl}^{-} \mid \mathrm{AgCl}, \mathrm{Ag} \\
\mathrm{Fe}^{2+}, \mathrm{Fe}^{3+} \mid \mathrm{Pt}
\end{gathered}
$$

means the electromotive forces of the cells:

$$
\begin{array}{lcl}
\mathrm{Pt}, \mathrm{H}_{2}\left|\mathrm{H}^{+}\right| \mathrm{Zn}^{2+} \mid \mathrm{Zni} & & \frac{1}{2} \mathrm{H}_{2}+\frac{1}{2} \mathrm{Zn}^{2+} \rightarrow \mathrm{H}^{+}+\frac{1}{2} \mathrm{Zn} \\
\mathrm{Pt}, \mathrm{H}_{2}\left|\mathrm{H}^{+}\right| \mathrm{Cl}^{-} \mid \mathrm{Cl}_{2}, \mathrm{Pt}, & \text { implying } & \frac{1}{2} \mathrm{H}_{2}+\frac{1}{2} \mathrm{Cl}_{2} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-} \\
\mathrm{Pt}, \mathrm{H}_{2}\left|\mathrm{H}^{+}\right| \mathrm{Cl}^{-} \mid \mathrm{AgCl}, \mathrm{Ag} & \text { the } & \text { reaction } \\
\mathrm{Pt}, \mathrm{H}_{2}\left|\mathrm{H}_{2}+\mathrm{He}^{2+}, \mathrm{Fe}^{3+}\right| \mathrm{Pt} & & \frac{1}{2} \mathrm{H}_{2}+\mathrm{Fe}^{3+} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}+\mathrm{Ag} \\
\mathrm{H}^{+}+\mathrm{Fe}^{2+}
\end{array}
$$

where the electrode on the left is a standard hydrogen electrode.

These electromotive forces may also be called relative electrode potentials or, in brief, electrode potentials.

On the other hand, the term 'electromotive force of a half cell' as applied to half cells written as follows:

$$
\begin{gathered}
\mathrm{Zn} \mid \mathrm{Zn}^{2+} \\
\mathrm{Pt}, \mathrm{Cl}_{2} \mid \mathrm{Cl}^{-} \\
\mathrm{Ag}, \mathrm{AgCl} \mid \mathrm{Cl}^{-} \\
\mathrm{Pt} \mid \mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}
\end{gathered}
$$

means the electromotive forces of the celis:

$$
\begin{array}{lcr}
\mathrm{Zn}\left|\mathrm{Zn}^{2+}\right| \mathrm{H}^{+} \mid \mathrm{H}_{2}, \mathrm{Pt} & & \frac{1}{2} \mathrm{Zn}+\mathrm{H}^{+} \rightarrow \frac{1}{2} \mathrm{Zn}^{2+}+\frac{1}{2} \mathrm{H}_{2} \\
\mathrm{Pt}, \mathrm{Cl}_{2}\left|\mathrm{Cl}^{-}\right| \mathrm{H}^{+} \mid \mathrm{H}_{2}, \mathrm{Pt} & \text { implying } & \mathrm{Cl}^{-}+\mathrm{H}^{+} \rightarrow \frac{1}{2} \mathrm{Cl}_{2}+\frac{1}{2} \mathrm{H}_{2} \\
\mathrm{Ag}, \mathrm{AgCl}\left|\mathrm{Cl}^{-}\right| \mathrm{H}^{+} \mid \mathrm{H}_{2}, \mathrm{Pt} & \text { the } & \text { reaction } \\
\mathrm{Ag}+\mathrm{Cl}^{-}+\mathrm{He}^{+}, \mathrm{AgCl}^{2+}, \mathrm{Fe}^{3+}\left|\mathrm{H}^{+}\right| \mathrm{H}_{2}, \mathrm{Pt} & & \mathrm{Fe}^{2+}+\mathrm{H}^{+} \rightarrow \mathrm{Fe}^{3+}+\frac{1}{2} \mathrm{H}_{2}
\end{array}
$$

where the elestrode on the right is a standard hydrogen electrode.
These electromotive forces should not be called electrode potentials.

PART VIII
 ABBREVIATIONS OF COMMON WORDS AND PHRASES

This list is not intended to be exhaustive. The words in this list will often be given in full in the text, but where abbreviations are used the following forms are recommended. Such abbreviations should be printed in roman type (except for ca.).
absolute
alternating current
anhydrous
approximate(-ly)
aqueous
average
boiling point
calculated
centre of gravity
coefficient
compound
concentrated
constant
corrected
critical
crystalline
current density
decomposition
diameter, inside
diameter, outside
dilute
direct current
distilled
electromagnetic unit
electromotive force
electron spin resonance
electrostatic unit
equation
experiment
experimental
freezing point

abs.	Greenwich mean time	G.M.T.
a.c.	infrared	i.r.
anhyd.	insoluble	insol.
approx., ca.	liquid	liq.
aq.	magnetomotive force	m.m.f.
av.	maximum	max.
b.p.	melting point	m.p.
calc.	minimum	min.
e.g.	nuclear magnetic resonance	n.m.r.
coeff.	observed	obs.
cpd	per cent	(or in full)
conc.	potential difference	p.d.
const.	precipitate	ppt.
corr.	preparation	prep.
crit.	radio frequency	r.f.
cryst.	recrystallized	recryst.
c.d.	relative humidity	r.h.
decomp.	root mean square	r.m.s.
i.d.	section, paragraph	§
o.d.	soluble	sol.
dil.	solution	soln
d.c.	standard temperature and	
dist.	pressure	s.t.p.
e.m.u.	temperature	temp.
e.m.f.	ultraviolet	u.r.
e.s.r.	universal time	U.T.
e.s.u.	vacuum	vac.
eqri	vapour density	v.d.
expt	vapour pressure	v.p.
exptl	volume	vol.
f.p.		

PART IX

RECOMMENDED VALUES OF PHYSICAL CONSTANTS

The following values have been recommended by the CODATA Committee (20 August 1970). The standard-deviation uncertainty is given below each vaiue. Details concerning the development of this self-consistent set of values and their uncertainties are given by Taylor, Parker \& Langenberg (1969); see the Biblio graphy, §X.2.4.

Quantity	Symbol	Value and standarddeviation uncertainty
speed of light in a vacuum	c	$\begin{gathered} 2.9979250 \times 10^{8} \mathrm{~ms}^{-1} \\ 10 \end{gathered}$
magnetic constant, permeability of a vacuum	μ_{0}	$\begin{gathered} 4 \pi \times 10^{-7} H^{\text {(exact) }} \end{gathered}$
electric constant, permittivity of a vacuum	$\epsilon_{0}=\mu_{0}^{-1} c^{-2}$	$\begin{gathered} 8.8541853 \times 10^{-12} \mathrm{Fm}^{-1} \\ 58 \end{gathered}$
fine structure constant	$\alpha=\mu_{0} e^{2} c_{l}^{\prime} 2 h$	$\underset{11}{7.297351} \times 10^{-3}$
	α^{-1}	$\begin{array}{r} 137.03602 \\ 21 \end{array}$
charge of a proton	e	$\begin{gathered} 1.6021917 \times 10^{-19} \mathrm{C} \\ 70 \end{gathered}$
Planck coñstant	h	$\underbrace{6.626}_{50} 196 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
	$\hbar=h / 2 \pi$	$\begin{gathered} 1.0545919 \times 1 \mathrm{l}^{-34} \mathrm{~J} \mathrm{~s} \\ 80 \end{gathered}$
	$h / 2 e$	$\begin{gathered} 2.0678538 \times 10^{-16} \mathrm{~J} \mathrm{~s} \mathrm{C}^{-1} \\ 69 \end{gathered}$
Avogadro constant	$L, N_{\text {A }}$	$\underset{40}{6.022169 \times 10^{23} \mathrm{~mol}^{-1}}$
unified atomic mase onnstant	$m_{\mathbf{u}}$	$\underset{11}{1.660531} \times 10^{-27} \mathrm{~kg}$
rest mass:		
of electron	m e	$\underset{54}{9.109558 \times 10^{-31} \mathrm{~kg}}$
	$m_{\mathrm{e}} / m_{\mathbf{u}}$	$\underset{34}{5.485930 \times 10^{-4}}$
of proton	m_{p}	$\begin{gathered} 1.672614 \times 10^{-27} \mathrm{~kg} \\ 11 \end{gathered}$
	$m_{\mathrm{p}} / m_{\mathbf{u}}$	$\begin{array}{r} 1.00727661 \\ 8 \end{array}$
	43	

Quantity	Symbol	Value and standarddeviation uncertainty
rest mass (cont.) :		
of proton	$m_{\mathrm{p}} / m_{\mathrm{e}}$	$\begin{array}{r} 1836.109 \\ 11 \end{array}$
of neutron	m_{n}	$\frac{1.674920 \times 10^{-27} \mathrm{~kg}}{11}$
	$m_{\mathrm{n}} / m_{\mathrm{u}}$	$\begin{array}{r} 1.00866520 \\ \underline{10} \end{array}$
Faraday constant	F	$\underset{54}{9.648} 670 \times 10^{4} \mathrm{C} \mathrm{~mol}^{-1}$
Rydberg constant	$R_{\infty}=\mu_{0}^{2} m_{\mathrm{e}} e^{4} c^{3} / 8 h^{3}$	$\underset{11}{1.09737312 \times 10^{7} \mathrm{~m}^{-1}}$
Bohr radius	$a_{0}=h^{2} / \pi \mu_{0} c^{2} m_{\mathrm{e}} e^{2}$	$\underset{\delta 1}{5.2917715} \times 10^{-11} \mathrm{~m}$
electron radius	$r_{\mathrm{e}}=\mu_{0} e^{2} / 4 \pi m_{\mathrm{e}}$	$\begin{gathered} 2.817939 \times 10^{-15} \mathrm{~m} \\ 13 \end{gathered}$
Bohr magneton	$\mu_{\mathrm{B}}=e h / 4 \pi m_{\mathrm{e}}$	$\begin{aligned} & 9.274096 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1} \\ & 65 \end{aligned}$
magnetic noment: of electron	$\mu_{\text {e }}$	$\underset{65}{9.284851} \times 10^{-24} \mathrm{JT}^{-1}$
	$\mu_{\mathrm{e}} / \mu_{\mathrm{B}}$	1.0011596389 © 1
of proton	μ_{p}	$\begin{gathered} 1.4106203 \times 10^{-26} \mathrm{JT}^{-1} \\ 99 \end{gathered}$
	$\mu_{\mathrm{p}} / \mu_{\mathrm{B}}$	$\begin{gathered} 1.521 \hat{0} 3264 \times \overline{1} \hat{0}^{-3} \\ 46 \end{gathered}$
gyromagnetic ratio of protons in $\mathrm{H}_{2} \mathrm{O}$	γ_{p}^{\prime}	$\begin{gathered} 2.6751270 \times 10^{8} \mathrm{~s}^{-1} \mathrm{~T}^{-1} \\ 82 \end{gathered}$
	$\gamma_{p}^{\prime} / 2 \pi$	$\begin{gathered} 4.257597 \times 10^{7} \mathrm{~s}^{-1} \mathrm{~T}^{-1} \\ 13 \end{gathered}$
γ_{p}^{\prime} corrected for diamagnetism of $\mathrm{H}_{2} \mathrm{O}$	γ_{p}	$\begin{gathered} 2.6751965 \times 10^{8} \mathrm{~s}^{-1} \mathrm{~N}^{-1} \\ 82 \end{gathered}$
	$\gamma_{p} / 2 \pi$	$\begin{gathered} 4.257707 \times 10^{7} \mathrm{~s}^{-1} \mathrm{~T}^{-1} \\ 13 \end{gathered}$
nuclear magneton	$\mu_{\mathrm{N}}=\left(m_{\mathrm{e}} / m_{\mathrm{p}}\right) \mu_{\mathrm{B}}$	$\underset{50}{5.050951} \times 10^{-27} \mathrm{~J} \mathrm{~T}^{-1}$
magnetic moment of protons in $\mathrm{H}_{2} \mathrm{O}\left(\mu_{\mathrm{p}}^{\prime}\right)$	$\mu_{\mathrm{p}}^{\prime} / \mu_{\mathrm{B}}$	$\begin{gathered} 1.52099312 \times 10^{-3} \\ 10 \end{gathered}$
	$\mu_{\mathrm{p}}^{\prime} / \mu_{\mathrm{N}}$	$\begin{array}{r} 2.792709 \\ 17 \end{array}$
$\mu_{\mathrm{p}}^{\prime}$ corrected for diamagnetism of $\mathrm{H}_{2} \mathrm{O}\left(\mu_{\mathrm{p}}\right)$	$\mu_{\mathrm{p}} / \mu_{\mathrm{N}}$	$\begin{array}{r} 2.792782 \\ 17 \end{array}$

Quantity	Symbol	Value and standarddeviation uncertainty
Compton wavelength: of electron	$\lambda_{\mathrm{C}}=h / m_{\mathrm{e}} c$	$\frac{2.4263096 \times 10^{-12} \mathrm{~m}}{74}$
of proton	$\lambda_{\mathrm{C}, \mathrm{p}}=h / \pi r_{\mathrm{p}} c$	$\begin{gathered} 1.3214409 \times 10^{-15} \mathrm{~m} \\ 90 \end{gathered}$
of neutron	$\lambda_{\mathrm{c}, \mathrm{n}}=h / m_{\mathrm{n}} \mathrm{c}$	$\begin{gathered} 1.3196217 \times 10^{-15} \mathrm{~m} \\ 90 \end{gathered}$
gas constant	R	$\begin{gathered} 8.31434 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \\ 35 \end{gathered}$
Boltzmann constant	$k=R / L$	$\underset{59}{1.380622 \times 10^{-23} \mathrm{JK}^{-1}}$
Stefan-Boltzmann constant	$\sigma=2 \pi^{5} k^{4} / 15 h^{3} c^{2}$	$\begin{aligned} & 5.66961 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4} \\ & \hline \end{aligned}$
first radiation constant ${ }^{(1)}$	$c_{1}=2 \pi h c^{2}$	$\underset{30}{3.741844} \times 10^{-16} \mathrm{~J} \mathrm{~m}^{2} \mathrm{~s}^{-1}$
	$8 \pi h c$	$\begin{gathered} 4.992579 \times 10^{-24} \mathrm{~J} \mathrm{~m} \\ 38 \end{gathered}$
second radiation constant	$c_{2}=h c / k$	$\underset{61}{1.438833} \times 10^{-2} \mathrm{mi} \mathrm{~K}$
gravitational constant	G	$\begin{aligned} & \frac{61}{6.6732} \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \\ & \hline 1 \end{aligned}$

(1) The spectral radiant exitance (formerly called spectral radiant emittance and sometimes emissive power), M_{λ}, is given by

$$
M_{\lambda}=2 \pi h c^{2} \lambda^{-5} /\{\exp (h c / k T \lambda)-1\}
$$

the spectral radiant energy density, w_{λ}, is given by

$$
w_{\lambda}=8 \pi h c \lambda^{-5} /\{\exp (h c / k T \lambda)-1\}
$$

unfortunately there is no accepted name or symbol for the constant 8\%he.

PART X

BIBLIOGRAPHY

X.1. General sources

X.1.1. The publications of the bodies of the Metre Convention

The proceedings of the General Conferense, the International Committee, the Consultative Committees, and the International Bureau are published under the auspices of the Bureau in the following series:

Comptes rendus des séances de la Conférence Générale des Poids et Mesures; ProcèsVerbaux des séances du Comité International des Poids et Mesures; Sessions des Comités Connuiltatifs;

Recueil de Mravaux du: Bureau International des Poids et Mesures (this compilation brings together articles published in scientific and technical journals and books, as well as certain work published in the form of duplicated reports.)

The collection of the Travaux et Mémoires du Bureau International des Poids et Mesures (22 volumes published between 1881 and 1966) ceased in 1966 by a decision of the International Committee.

From time to time the International Bureau publishes a report on the development of the Metric System throughout the world, entitled Les récents progrès $d u$ Système Métrique.

Since 1965 the international journal Metrologia, edited under the auspices of the International Committee of Weights and Measures, has published articles on the principal work on scientific metrology carried out throughout the world and on the improvement in measuring methods and standards, units, etc., as well as reports concerning the activities, decisions, and recommendations of the various bodies created under the Metre Convention.

X.1.2. The publications of the work of Technical Committee no. 12 of the International Organization for Standardization (ISO/TC 12)

ISO Recommendation R 31. An ISO Recommendation on quantities, units, symbols and conversion factors issued in various parts, sever: of which have been published. Six other parts still in draft form remain to be completed. In all the parts dealing specifically with units, the SI units are listed first, blu many other units in commo. international use are also listed, with conversion factors in terms of SI.

The published parts are:
Part I: 1935 Basic quantities and units of the SI and quantities and units of space and time.
Part II: 1958 Quantities and units of periotic and related phenomena.
Part III: 1960 Quantities and units of mechanics.
Part IV: 1960 Quanticies and units of heat.

Part V: 1965 Quantities and units : electricity and magnetism. Part VII: 1965 Quantities and units of acousties.
Part XI: 1961 Mathematical signs and symbols for use in science and technology.
In the UnitedKingdom these can be purchased from the British Standards Institution (see note 3 below for the address).

The parts in preparation are:
DIR 839 Quantities and units of nuclear reactions and ionizing radiation.
DIR 838 Quantities and units of atomic and nuclear physics.
DIR 1777 Quantities and units of phvsical chemistry and molecular physics.
DIR 1778 Quantities and units of ligin and related electromagnetic radiations.
DIR 2188 Dimensionless parameters.
DIR 2180 General principles concerning quantities, units and symbols.
X.1.3

Bureau International des Poids at Mesures 1970 SI Le Système International d'Unités. Paris: OFFrLIB, 48 rue Gay-Lussac, F75 Paris 5.
X.1.4

National Physical Laboratory 1970 SI The International System of Units (translation of preceding entry approved by BIPM). London:H.M.S.O. (Also published by the National Bureau of Standards, U.S.A.)
X. 1.5

International Union of Pure and Applied Physics, S.U.N. Commission 1965
Symbols, units and nomenclature in physics. Document U.I.P.!1 (S.U.N. 65-3). (New edition in preparation.)
X.1. 6

International Union o: 'Pure and Applied Chemistry, Division of PhysicalChemistry, Commission on Symbols, Terminology, and Units 1970 Manual of symbols and terminology for physicochemical quantities and units. London: Butterworths.

X.2. Special sources

X.2.1

BS 12191958 Recommendations for proof correction and copy preparation.

X.2.2

International Union of Crystallography 1969 International tables for X-ray crystallography, vol. 1. Birmingham: Kynoch Press.
X.2.3

Joint Commission for Spectroscopy of I.U.P.A.P. and I.A.U. 1955 Report on notation for the spectra of polyatomic molecules. Jovrnal of chemical physics, 23, 1997.
X. 2.4

Taylor, B. N., Parker, W. H. \& Langenberg, D. N. 1969 Reviews of modern physics, 41, 375, or The fundamental constants and quantum electrodynamics. New York: Academic Press.

X.3.1

BS 37631970 The International System of Units.
X.3.2

McGlashan, M. L. 1971 Physicochemical quantities and units (the grammar and spelling of physical chemistry) (2nd ed.). London: The Royal Institute of Chemistry.
X.3.3

BS 350 Conversion factors and tables:
1959 Part 1: Basis of tables, conversion factors.
X.3.4

BS 1991 Letter symbols, signs and abbreviations:
1967 Part 1: General.
1961 Fart 2: Chemical engineering, nuclear science and applied chemistry.
1961 Part 3: Fluid mechanics.
1961 Part 4: Structures, materials and soil mechanics.
1961 Part 5: Applied thermodynamics.
1963 Part 6: Electrical science and engineering.

X.3.5

Chaundy, T. W., Barrett, P. R. \& Batey, C. 1954 The printing of mathematics. Oxford University Press.

X.3.6

The Royal Society 1965 General notes on the preparation of scientific papers. London: The Royal Society.

> Notes

1. The foregoing Bibliography is inevitably selective rather than comprehensive.
2. Many of the items listed (especially those under the heading Supplementary literature) are subject to repeated revision; all such titles should be consulted in their latest edition.
3. The publications labolled with the prefix BS are issued by the British Standards Institution, 2 Park Streé, London W1A 2BS.

[^0]: (1) See also page 45.
 (2) No internationally agreed symbol has yet been recommended, but $p \ldots n$ are in use.

[^1]: (1) System of loosely coupled electrons. (2) System of tightly coupled electrons.
 (3) All energies are taken here with respect to the ground state as reference level.
 (4) For vector quantities see p. 32.

